Name: _____

Date: _____

Period: _____

Lab – Force & Acceleration

Question: How does acceleration change when the same force is applied to objects which have different masses?

Hypothesis (use the term directly or inversely proportional): ______

Procedure:

- 1. Gather Materials: Triple Beam Balance, 4-wheeled cart, 1-meter string, 1 large ball bearing, 3 weights, plastic cup, meter stick, masking tape, stopwatch
- 2. Mass cart & Record: _____
- 3. Mass ball bearing & cup together, Record mass: _____
- 4. Mass one weight & record: _____
- 5. Tie sting to cart and tape other end to cup
- 6. Set cart on table, run sting across table so cup hangs over the end opposite cart.
- 7. Set a start & stop line one meter apart.
- 8. Place ball bearing in cup & release
- 9. Measure time for cart to cover 1 meter, Record.
- 10. Repeat 4 times.
- 11. Add one weight to cart & repeat procedure.
- 12. Repeat procedure with 2 weights on cart.
- 13. Repeat with 3 weights.

Data:

Cart with	Trial 1	Trial 2	Trial 3	Trial 4	Average time
0 weights					
1 weights					
2 weights					
3 weights					

Data Analysis:

If gravity pulls with an acceleration of 9.8m/s², What force did the cup & ball bearing apply to the cart during each trial?

Name:	
Date:	
Period:	

Lab – Force & Acceleration

Data Analysis:

Cart with	Combined mass	Distance Traveled	Average Time	Acceleration			
	(Cart + weights)		(From Data)	(see formula below)			
0 weights							
1 weights							
		1 Meter					
2 weights							
3 weights							

Acceleration = distance
$$\div$$
 (time x time) or a = d/t²

Graph:

How does mass affect acceleration of an object when the force remains the same?